
Topic 1:
Introduction
and Program
Design - Part 2

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Understand the need for various sorts of

documentation to accompany the delivery of

code

§ Know basic types of internal and external

documentation

§ Understand the need for use of and

documentation of a systematic test strategy

and its results

§ Explain the terms design and design

methodology in software development

Learning Objectives

4

§ Define the terms algorithm, pseudocode,

sequence, selection and iteration

§ Be able to give acceptable pseudocode

versions of simple algorithms

§ Use Java constructs for controlling flow

§ Explain concepts of high-level pseudocode,

procedural abstraction and data abstraction

§ Understand the basics of using procedures

including return types, arguments, formal

parameters

Learning Objectives

5

§ Give a brief description of structured

programming including top-down

refinement and the use of call graphs;

§ Be able to use simple procedural

abstraction in good designs

Reading

Savitch: Chapters 2, 3, 4

Recommended self test questions:

Chapters 2.4, 3.1, 3.2, 4.1

Learning Objectives

6

Programmers Responsibility

§ Whether working alone or as part of a team,

the main concerns of a programmer are that

at the end of their work they need to deliver:

§ Some code which works according to the

expectations of their customer, or client (who

could be an end user, a big organisation or

other software developers)

§ Some documentation which, along with the

code, helps make the code easy to install, use,

understand (for modification, maintenance and

extension), and gives the client confidence that

the product works

7

Programmers Responsibility

§ A programmer may also have to document

the progress of their work so that:

§ They and their manager (or even client) can get

an idea of how things are going and predict

finish dates

§ They don’t keep re-trying dead-ends

§ They and their manager can learn from the

overall process

§ Someone else can take over if the programmer

gets run over by a bus

8ICT167 Required

Documentation

§ In later units, you will learn quite formal ways

of presenting all this documentation

§ In ICT167 we require:

§ Internal documentation (i.e. in the program)

AND

§ External documentation (i.e. in separate text)

9

§ For internal documentation we require:

§ A beginning comment clearly stating title,

author, date, file name, purpose and any

assumptions or conditions on the form of input

and expected output

§ Other comments giving useful low-level

documentation and describing each component

§ Well-formatted readable code with meaningful

identifier names and blank lines between

components (like functions, modules, methods

and classes)

ICT167 Required

Documentation

10

§ In using Java it is also good practice to

make use of Javadoc

§ For practice work, you should follow these

requirements

§ For assignments, you should follow these

requirements and submit source code as

well as external documentation...

ICT167 Required

Documentation

11

§ Required External Documentation

§ Title: a paragraph clearly stating title, author,

date, file name, and one-line statement of

purpose

§ Requirements/Specification: a paragraph

giving a more detailed account of what the

program is supposed to do. State any

assumptions or conditions on the form of input

and expected output

§ User Guide: instructions on how to compile, run

and use the program

ICT167 Required

Documentation

12

§ Required External Documentation

continued..
§ Structure/Design: Outline the design of your

program. Give a written description, use diagrams

and use pseudocode

§ Testing: Describe your testing strategy (the more

systematic, the better) and any errors noticed. Give

copy of results of testing

§ Limitations: Describe program shortfalls (if any),

eg, the features asked for but not implemented

§ Listings: Attach source code listings (source

program text)

ICT167 Required

Documentation

13

§ This can mean either:

§ The task of thinking up a good overall

approach to the program (one of the
phases of the software development cycle)

§ The actual overall arrangement of the

program

§ The description of overall arrangement of

the program as given in the documentation

Design

14

§ A Design Methodology is a systematic

approach to design, and supports good

design by helping with the design task and

possibly with the description of it

Design

15

§ A design methodology may:

§ Suggest a tried and tested general way of

coming up with a good design

§ Allow a programmer to re-use other designs by

allowing easier understanding and

communication of designs

§ (or may not) be supported by a programming

language

§ We will look at the OO design methodology

later

Design

16

§ During most of the 20th century, programmers

did not have to be very sophisticated

designers

§ The most important design task was to come

up with an algorithm to solve a problem

§ Recall, an algorithm is a very precise,

complete set of instructions to solve a problem

§ The instructions may be expressed in a natural

language (like Chinese or English) or a

programming language (like Java or C) or a

mixture

Algorithms and Design

17

§ In ICT167 we will use structured English or

pseudo-code (a mixture of English and

Java)

§ You can mix English and Java as you find

convenient

§ It is important to remember that your

pseudo-code is supposed to convey to the

reader, in an easily readable way, that you

really have produced a completely precise

algorithm which needs no further clever

work to put into code

Algorithms and Design

18

§ Although you might think that coding is

hard, you will hopefully one day join the

many people who can easily translate good

precise pseudo-code into one of several

programming languages

§ The hard creative part is coming up with the

algorithm in the first place

§ So format your pseudo-code nicely (i.e.

indent) and don’t use words like "it" unless

it is very clear what "it" is

Algorithms and Design

19

§ Because algorithms should be complete

instructions, their basic steps should

consist in small indivisible steps like

"input a character", add x to y and store the

result as z, etc.

Algorithms and Control Flow

20

§ You can then build up a bigger algorithm by

putting together steps via:

§ sequence: one step after another

§ selection: choosing what to do on the basis of

a simple test

§ iteration: keep doing the same thing over and

over until some test holds

§ Virtually every programming language

allows easy expression of these ways of

implementing an algorithm

Algorithms and Control Flow

21

§ Today, only the most basic of programs

directly represent low-level algorithms

§ It is much more common for us to use

pseudo-code in a more high-level way

§ Still we use sequencing, selection and

iteration but the nature of the individual

steps is different

Using Pseudo-code

22

§ Here is some pseudo-code to keep getting

an input line from the user and display the

first and last character until the first one is

‘q’:
firstchar = ‘x’

while (firstchar != ‘q’)

prompt user for input

s = next input line

firstchar = first character of s

lastchar = last character of s

display “first character =” firstchar

display “last character =” lastchar

indicate that program is finished

Using Pseudo-code

23

§ Before we think about why this is high-

level, let us look at the Java version

§ Note that there are extra bits and pieces in

the Java code to make it more user

friendly and set up the input, but the

underlying algorithm is the same

Using Pseudo-code

24

//Pseudo.java

//Displays the first and last characters of lines of

//text from standard input. Use 'q' to quit program.

//must import Scanner class

import java.util.Scanner;

public class Pseudo

{

public static void main(String[] args)

{

Scanner input = new Scanner(System.in);

char firstchar = 'x';

char lastchar = 'x';

System.out.println("Start a line with q to quit.");

Example

25

while (firstchar != 'q'){

System.out.println("Enter a line:");

String s = input.nextLine();

//gets 1st character of s

firstchar = firstCharOf(s);

//gets last character of s

lastchar = lastCharOf(s);

System.out.println("1st character is "+firstchar);

System.out.println("Last character is "+lastchar);

System.out.println();

System.out.println("Next.");

} //end of while

System.out.println("You quit.");

} //end of main

Example

26

//Note: this program is incomplete -

// some things are missing here

} //end of class Pseudo

Example

27

§ The pseudo-code and Java code above

counts as high-level for two reasons:
1. The basic steps are not the single

indivisible steps of machine code
§ They are sometimes words which summarize

quite a complex operation

§ That is what we mean by high-level, i.e.

using simple names to stand for

something more complex

2. In programming design this technique is

called Abstraction

High Level Pseudo-code

28

§ Abstraction = dealing with the essential

features of something while ignoring the

details

§ It allows us to give an overall description of

some procedure (like that in Pseudo.java)

without getting bogged down in details

§ Abstraction of a tool:
§ What it is used for and how to use it, not how it

works and what parts it consists of

§ Note: procedure here is a generic term
§ When translated into Java, the procedure is

called a method (and a function in C)

High Level Pseudo-code

29

§ In software development, abstraction is

used in two ways:

1. Procedural (functional) abstraction: we

have procedural abstraction when we have a

simple name for a more or less complicated
procedure. Eg: firstchar is the first

character in s (the procedure finds the first

character in a string)

2. Data abstraction: we have data abstraction

when we have a simple name for a more or

less complicated piece of data, like the value
of a variable. Eg: s is a whole string of

characters

High Level Pseudo-code

30

§ (We will look at data abstraction later)

§ Coding at low-level is very boring and time

consuming

§ Productivity (and convenience and ease of

design and ease of understanding and

maintenance etc) is increased greatly when

the programming language supports

abstraction

§ Much larger and more complex programs

become feasible

Using Procedural Abstraction

31

§ Early high-level languages supported

procedural abstraction by allowing named

functions, procedures, subroutines or

methods

§ The idea was perhaps most developed in

the traditional teaching language Pascal

§ Even modern OO languages like Java

continue to do so (in a very slightly different

way)

Using Procedural Abstraction

32

§ The idea of using a procedure in design

(and then in coding) is to capture a

common and well-defined task

§ It might be a task which is undertaken

many times at many places in your program

(or even in other programs too) or it might

be a task which you want to think about

separately

Using Procedural Abstraction

33

§ You must give some code (or pseudo-code) to

show how the procedure works – that is, the

procedure definition and its body

§ You will also, separately, have the main

program which calls the procedure (using its

name)

§ Eg: here’s a pseudocode definition ...

Procedure char lastCharOf(String str)

…pseudocode to work out last char of str…

A Typical Procedure

34

§ Decide what input information (if any) the

procedure needs to do its job
§ The procedure may in general get information

from the program via parameters (or via

global/instance variables)

§ Decide what output information (if any) the

procedure returns to the main program or

another procedure

§ Information may come back via a return value, via

changes to arguments or via changes to

global/instance variables

A Typical Procedure

35

§ On the other hand a procedure may just do

something (like output something to the

screen) and not return any values

§ After that you need to try and work out the

code for the body of the procedure – that is,

the code that actually does the work

A Typical Procedure

36

§ In many languages (as in Java) you can

choose whether a procedure (called a method

in O-O languages) has a return value or not

§ If it does have a return value, then you will

often see calls to it like

chr = firstCharOf(str);

so the return value of the procedure
firstCharOf() is assigned to the variable chr

Or, calls like

print(firstCharOf(str));

Return Types

37

§ So the return value of firstCharOf() is

given to the procedure print()

§ In typed languages like Java (which require

you to declare the type of variables) you will

need to declare the return type of a

procedure in its definition and make sure it

makes sense where it is called

§ In some languages procedures with return

values are called functions

Return Types

38

§ In the definition of a procedure with a return

value you will need to indicate exactly which

value to return to the main program or

another procedure. For example, in Java you

write:

return 2;

to immediately send the value 2 back from the

procedure

§ Use "return value" also in pseudo-code. Make

sure that the type of the value matches the

declared return type of the procedure

Return Types

39

§ Here is the possible pseudo-code for the
whole of the procedure lastCharOf()

Procedure char lastCharOf(String str)

n = lengthOf(str)

lco = CharAt(str, n-1)

return lco

§ Again this is high-level
§ However, I happen to know that it uses procedures

which are (practically) built-in to Java

§ They find the length of a String and find the

character at a given index location in a String

Example

40

§ As in many languages, Java indexes String

(and Array) locations starting from 0

§ So the first character is at index 0, etc.

§ If you want to know how these procedures

themselves are defined in terms of even

more basic steps then you need to start

thinking about the way Strings are

implemented

§ But that is Data Abstraction and it is looking

below Java anyway, so we won’t

Example

41

§ Note there is no official syntax (way of

writing) procedures in pseudocode, but do

try to be clear about names, types, etc.

Example

42

§ If the procedure has no return value then it can

only be called via a whole statement like:
print(‘x’);

or
print(firstCharOf(str));

i.e. it does not make sense to write
a = print(‘x’);

§ In Java these types of procedures are treated

in a similar way to procedures with a return

value. We just declare the return type to be

void if we have no return value

Procedures With No Return

Types

43

§ You can put a return statement in the

definition of the procedure to indicate where

control passes back to the main program

§ Remember that code might (or might not) be

useless after a return statement:

void proCC(int x) {

if (x != 3) {

x = 4;

}

else

return;

Procedures With No Return

Types

44

printOut(x);

return;

printOut(x-1);

} //end of proCC

§ Sometimes, you do not have to put a return
§ The procedure also returns when its end is

reached

Procedures With No Return

Types

45

§ Information is also passed in and out of a

procedure via its arguments

§ You will need to specify the number of,

types of and exact ordering of arguments

§ You do this in the procedure definition by

using some formal parameters, i.e.

variables standing for the arguments

(actual parameters) which you can then use

in the body of the procedure

Formal Parameters and

Arguments

46

§ When you call the procedure from the main

program (or another procedure) you need to

supply an exactly matching set of arguments

§ Eg: a definition
void addAndDisplay(String s, int x, int y){

int z = x+y;

System.out.println(s + “ : ” + z);

}

and a call ...

val = 7- 3;

addAndDisplay(“Answer is”, val, 3);

Formal Parameters and

Arguments

47

§ Note that if a procedure has no arguments

we still write eg: name() to define and call it

Formal Parameters and

Arguments

48

§ The neatest, most standard, and commonly

understood way of using parameters in

pseudo-code or program code is:
§ Have either no output from a procedure or at

most one output value which is the return value

§ Use parameters for input only

§ Do not change the value of the parameters inside

the procedure

§ Please stick to these rules in all pseudo-code

Parameter Passing

49

§ In many programming languages, including

Java, these rules can be broken and we will

break them later

§ However, what happens then depends very

much on the detailed rules of the language

§ Pseudo-code has no such tricky subtle rules

Eg: what does the following mean?
//bad pseudocode

void swap(int x, int y){

int t=x; x=y; y=t;

}

Parameter Passing

50

§ The previous pseudo-code would be called

by:

a=4;

b=3;

swap(a,b);

swap(a,6);

§ This is bad because it is not unambiguous

and so not precise

Parameter Passing

51

§ Another problem arises with O-O languages

§ Sometimes, you will see what looks like an

argument in front of a procedure call. Eg:

char x = str.charAt(2);

§ (find the 3rd char in the String str and assign to x)

§ Isn’t the String str an argument to the function

charAt()?

§ In pseudocode, we write:

x = CharAt(str, 2)

Parameters In O-O

Languages

52

§ The nitty-gritty of parameter passing is tricky

in a real programming language so we will

come back to that later

§ The use of parameters makes the design

clear and the procedure re-usable

Parameters In O-O

Languages

53

§ It is useful to be able to look at the top line of

the definition of a procedure and know that

you are seeing all the information about what

inputs and outputs there are

§ You can copy the procedure and use it in

another application

Parameters In O-O

Languages

54

§ The idea of procedural abstraction and,

more importantly, its support in powerful

languages like C and Pascal, allowed much

more complex programs to be designed and

implemented well

§ Abstraction allows people to cope with

complexity

§ In fact, a whole design methodology called

Structured Design based on procedural

abstraction became popular

Structured Design

55

§ The basic idea is to design and implement

by top-down refinement: break the problem

up into a series of steps involving the major

sub-tasks and then implement each sub-task

as a procedure in the same way

§ Eventually you will just have procedures

which can be directly implemented in basic

statements in the programming language

§ The methodology even came with its own

diagrams: call graphs

Structured Design

56

§ These are graphs showing which procedures

call which procedures

§ They give a good overall picture of the design of a

structured program

§ We can and do program like this in Java

§ It is easy to use procedures (i.e. methods) to

break down a task into simpler tasks

§ However, there is quite a bit more as well to

O-O design as we will see

Structured Design

57

Procedural Abstraction in Java

§ Consider the following problem:

§ Loop around, getting a floating point number

from the user and keep a running total of the

input numbers

§ Each time display the latest number and the

running total, both correct to two decimal

places

§ Stop when the user enters a number outside

the range -100 to 100

Example Problem

58

§ Here’s some pseudo-code for the

problem:
total = 0

flag = true

while (flag)

get an input number d from the user

if outOfRange(d) then set flag to false

else

dispTwoDPs(d)

total = total + d

dispTwoDps(total)

end else

end while

Example Solution: Pseudo-

code

59

§ Note the use of procedures above to

display a number correct to 2 decimal

places and test whether a number is out

of range or not

Example Solution: Pseudo-

code

60

//TwoDPs.java

//Displays running total of numbers in lines of

standard

//input correct to two decimal places.

//Uses an out of range number (<-100 or >100) to quit.

import java.util.Scanner;

public class TwoDPs {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

double total=0;

boolean flag=true;

Example Solution: Java Code

61

System.out.println("Use an out of range entry

< -100 or > 100 to quit.");

while (flag){

System.out.println("Enter a number on a

line:");

double d = input.nextDouble();

if (outOfRange(d)){

flag=false;

}

else

{

Example Solution: Java Code

62

dispTwoDPs("The number value is", d);

total = total + d;

dispTwoDPs("The total is", total);

System.out.println();

System.out.println("Next.");

}//end of else

}//end of while

System.out.println("You quit.");

}//end of main

/* Note: put the outOfRange(…) and

dispTwoDPs(…) method definitions here */

}//end of class

Example Solution: Java Code

63

Out of Range procedure

§ Here is some possible pseudocode:

procedure boolean outOfRange(double d)

if (d < -100) return true

if (d > 100) return true

return false

Example Solution: Pseudo-

code

64

§ Here is some Java code:
static boolean outOfRange(double d){

if (d<-100) return true;

if (d>100) return true;

return false;

}

§ And here is another possibility in Java:
static boolean outOfRange(double d){

return ((d < -100) || (d > 100));

}

Example Solution: Java Code

65

Display to two decimal places

§The algorithm is a bit tricky

§Here is some very high-level pseudocode:

procedure DispTwoDPs(double d)

record whether d is negative in neg

make a positive version of d, store in posNum

add 0.005 to posNum, store in nPlus

record the whole number part of d in whole

Example Solution: Pseudo-

code

66

let rest be whole - nPlus

let temp be the whole number part of rest to 2

decimal places by 100 * rest + 100

let ss be the last two characters of the string

version of temp

display the sign of the original d,
followed by the whole number part of d,

followed by a decimal point
followed by ss

return

Example Solution: Pseudo-

code

67

§ We could be even more specific with the

pseudo-code but it would then look very much

like the following Java code

§ EXERCISE: to see where this 0.005 and 100

come in, try some examples

§ Eg, try 0.861, 0.866, 0.995, -0.1, 0.05, 4, 45.0

Example Solution: Pseudo-

code

68

static void dispTwoDPs(String msg, double

num){

// Display on screen the message msg followed by num

// correct to two decimal places with both decimal

// values showing even if they are zero

//record whether the number is negative

boolean neg = (num < 0);

//make a positive version of the number

double posNum = num;

if (neg) posNum = -num;

Example Solution: Java Code

69

//add 0.005 to the posNum, so that

//truncating nPlus is equivalent to

//rounding posNum

double nPlus = posNum + 0.005;

//extract whole number part and the rest

int whole = (int) nPlus;

double rest = nPlus - whole;

//multiply the rest by 100

//truncate, cast and make sure there

//are some zeros in front of small numbers

int temp = (int)(100.0 * rest + 100.0);

Example Solution: Java Code

70

//make a string version of temp

String ss = "" + temp;

int len = ss.length();

String sign ="";

if (neg) sign="-";

//display the message, sign, whole part

//and last two digits of ss

System.out.println(msg + " " + sign +

whole + "." + ss.substring(len-2,len)

);

}//end of DispTwoDPs

Example Solution: Java Code

71

//Note: ss.substring(i,j) is a library

//procedure which finds the substring of

//string ss starting at index i and

//finishing at index j-1

Example Solution: Java Code

72

A Call Graph

End of Topic 1 – Part 2

